Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
2.
Toxins (Basel) ; 14(1)2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051009

RESUMO

The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays with radiolabeled Cry1Ab and brush border membrane vesicles from susceptible insects showed that Cry1A proteins shared binding sites, though the results were not conclusive for Cry1F. The results were confirmed using radiolabeled Cry1Aa. The resistant insects showed a reduction of the specific binding of both Cry1Ab and Cry1Aa, suggesting that part of the binding sites were lost or altered. Competition binding assays showed full competition between Cry1Ab and Cry1Aa proteins in the susceptible colony but only partial competition in resistant insects, confirming the alteration of some, but not all, binding sites for these two proteins. The binding site model for Cry1A proteins in O. furnacalis is in agreement with the occurrence of multiple membrane receptors for these proteins.


Assuntos
Toxinas de Bacillus thuringiensis/efeitos adversos , Resistência a Inseticidas/genética , Larva/efeitos dos fármacos , Larva/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Zea mays/parasitologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , China , Controle Biológico de Vetores/métodos
3.
Arch Insect Biochem Physiol ; 109(1): e21853, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820894

RESUMO

Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.


Assuntos
Afídeos/metabolismo , Proteoma , Animais , Afídeos/microbiologia , Afídeos/fisiologia , Enterobacteriaceae/metabolismo , Hordeum/parasitologia , Proteínas de Insetos/metabolismo , Folhas de Planta/parasitologia , Serratia/metabolismo , Simbiose , Zea mays/parasitologia
4.
PLoS One ; 16(12): e0260532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928980

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major maize pest in the United States causing significant economic loss. The emergence of field-evolved resistant WCR to Bacillus thuringiensis (Bt) traits has prompted the need to discover and deploy new insecticidal proteins in transgenic maize. In the current study we determined the crystal structure and mode of action (MOA) of the Vpb4Da2 protein (formerly known as Vip4Da2) from Bt, the first identified insecticidal Vpb4 protein with commercial level control against WCR. The Vpb4Da2 structure exhibits a six-domain architecture mainly comprised of antiparallel ß-sheets organized into ß-sandwich layers. The amino-terminal domains 1-3 of the protein share structural homology with the protective antigen (PA) PA14 domain and encompass a long ß-pore forming loop as in the clostridial binary-toxB module. Domains 5 and 6 at the carboxyl-terminal half of Vpb4Da2 are unique as this extension is not observed in PA or any other structurally-related protein other than Vpb4 homologs. These unique Vpb4 domains adopt the topologies of carbohydrate-binding modules known to participate in receptor-recognition. Functional assessment of Vpb4Da2 suggests that domains 4-6 comprise the WCR receptor binding region and are key in conferring the observed insecticidal activity against WCR. The current structural analysis was complemented by in vitro and in vivo characterizations, including immuno-histochemistry, demonstrating that Vpb4Da2 follows a MOA that is consistent with well-characterized 3-domain Bt insecticidal proteins despite significant structural differences.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Inseticidas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Cristalografia por Raios X , Inseticidas/química , Intestinos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Zea mays/metabolismo , Zea mays/parasitologia
5.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884854

RESUMO

WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa-e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.


Assuntos
Mariposas/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/genética , Animais , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Herbivoria , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Família Multigênica , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Zea mays/parasitologia
6.
PLoS One ; 16(11): e0257736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735485

RESUMO

Since 2016, fall armyworm (FAW) has threatened sub-Saharan 'Africa's fragile food systems and economic performance. Yet, there is limited evidence on this transboundary pest's economic and food security impacts in the region. Additionally, the health and environmental consequences of the insecticides being used to control FAW have not been studied. This paper presents evidence on the impacts of FAW on maize production, food security, and human and environmental health. We use a combination of an agroecology-based community survey and nationally representative data from an agricultural household survey to achieve our objectives. The results indicate that the pest causes an average annual loss of 36% in maize production, reducing 0.67 million tonnes of maize (0.225 million tonnes per year) between 2017 and 2019. The total economic loss is US$ 200 million, or 0.08% of the gross domestic product. The lost production could have met the per capita maize consumption of 4 million people. We also find that insecticides to control FAW have more significant toxic effects on the environment than on humans. This paper highlights governments and development partners need to invest in sustainable FAW control strategies to reduce maize production loss, improve food security, and protect human and environmental health.


Assuntos
Agricultura/economia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera/patogenicidade , África do Norte , Animais , Etiópia , Humanos , Inseticidas/economia , Larva/genética , Larva/parasitologia , Fatores Socioeconômicos , Spodoptera/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
7.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833966

RESUMO

Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH• and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25-14.14 mg GAE/g (total phenolics), 3.62-4.67 mg QE/g (total flavonoids), 3.63-6.29 mg/g (tannins), 3.66-4.31% (phytate), 8.92-12.11 µg/g (total xanthophylls), 2.42-2.89 µg/g (total ß-carotene), and 3.17-3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH• (SC50: 9.07-26.35 mg/mL) and ABTS•+ (2.65-7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64-0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28-52.55 mg/mL and 47.72-63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH• SC50 (p < 0.01, r = -0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = -0.836) and α-glucosidase IC50 (p < 0.05, r = -0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.


Assuntos
Antioxidantes/análise , Inibidores de Glicosídeo Hidrolases/análise , Compostos Fitoquímicos/análise , Zea mays/química , alfa-Amilases/antagonistas & inibidores , Antioxidantes/farmacologia , Resistência à Doença , Flavonoides/análise , Flavonoides/farmacologia , Geobacillus stearothermophilus/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Estresse Oxidativo , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/análise , Striga/fisiologia , Taninos/análise , Taninos/farmacologia , Zea mays/parasitologia
8.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638623

RESUMO

How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.


Assuntos
Spodoptera/genética , Spodoptera/fisiologia , Adaptação Fisiológica/genética , Animais , China , Produtos Agrícolas/parasitologia , Fenômenos Fisiológicos do Sistema Digestório , Comportamento Alimentar/fisiologia , Feminino , Ontologia Genética , Genes de Insetos , Herbivoria/genética , Herbivoria/fisiologia , Adaptação ao Hospedeiro/genética , Adaptação ao Hospedeiro/fisiologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Larva/fisiologia , Masculino , Oryza/parasitologia , Oviposição/fisiologia , Spodoptera/patogenicidade , Transcriptoma , Zea mays/parasitologia
9.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34675080

RESUMO

Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.


Assuntos
Benzoxazinas/metabolismo , Herbivoria , Solo/química , Spodoptera/crescimento & desenvolvimento , Zea mays/metabolismo , Animais , Ecossistema , Homeostase , Ferro/metabolismo , Larva/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Zea mays/parasitologia
10.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681926

RESUMO

Spodoptera frugiperda is a highly polyphagous and invasive agricultural pest that can harm more than 300 plants and cause huge economic losses to crops. Symbiotic bacteria play an important role in the host biology and ecology of herbivores, and have a wide range of effects on host growth and adaptation. In this study, high-throughput sequencing technology was used to investigate the effects of different hosts (corn, wild oat, oilseed rape, pepper, and artificial diet) on gut microbial community structure and diversity. Corn is one of the most favored plants of S. frugiperda. We compared the gut microbiota on corn with and without a seed coating agent. The results showed that Firmicutes and Bacteroidetes dominated the gut microbial community. The microbial abundance on oilseed rape was the highest, the microbial diversity on wild oat was the lowest, and the microbial diversity on corn without a seed coating agent was significantly higher than that with such an agent. PCoA analysis showed that there were significant differences in the gut microbial community among different hosts. PICRUSt analysis showed that most of the functional prediction categories were related to metabolic and cellular processes. The results showed that the gut microbial community of S. frugiperda was affected not only by the host species, but also by different host treatments, which played an important role in host adaptation. It is important to deepen our understanding of the symbiotic relationships between invasive organisms and microorganisms. The study of the adaptability of host insects contributes to the development of more effective and environmentally friendly pest management strategies.


Assuntos
Bactérias/classificação , Plantas/parasitologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Spodoptera/fisiologia , Animais , Avena/parasitologia , Bactérias/genética , Bactérias/isolamento & purificação , Brassica napus/parasitologia , Capsicum/parasitologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Filogenia , Plantas/classificação , Spodoptera/microbiologia , Zea mays/parasitologia
11.
Mol Biol Rep ; 48(10): 6779-6786, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468910

RESUMO

BACKGROUND: Meloidogyne arenaria is an economically important root-knot nematode (RKN) species whose hosts include maize (Zea mays). The plant response to RKN infection activates many cellular mechanisms, among others, changes in the expression level of genes encoding transcription and elongation factors as well as proteins related to cell wall organization. METHODS AND RESULTS: This study is aimed at characterization of expression of selected transcription and elongation factors encoding the genes WRKY53, EF1a, and EF1b as well as the ones encoding two proteins associated with cell wall functioning (glycine-rich RNA-binding protein, GRP and polygalacturonase, PG) during the maize response to M. arenaria infection. The changes in the relative level of expression of genes encoding these proteins were assessed using the reverse transcription-quantitative real-time PCR. The material studied were leaves and root samples collected from four maize varieties showing different susceptibilities toward M. arenaria infection, harvested at three different time points. Significant changes in the expression level of GRP between susceptible and tolerant varieties were observed. CONCLUSIONS: Results obtained in the study suggest pronounced involvement of glycine-rich RNA-binding protein and EF1b in the maize response and resistance to RKN.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Tylenchoidea/fisiologia , Zea mays/genética , Zea mays/parasitologia , Animais , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
12.
Toxins (Basel) ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564662

RESUMO

Transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal proteins have been extensively planted for insect pest control, but the evolution of Bt resistance in target pests threatens the sustainability of this approach. Mutations of cadherin in the midgut brush border membrane was associated with Cry1Ac resistance in several lepidoptera species, including the Asian corn borer, Ostrinia furnacalis, a major pest of maize in Asian-Western Pacific countries. However, the causality of O. furnacalis cadherin (OfCad) with Cry1Ac resistance remains to be clarified. In this study, in vitro and in vivo approaches were employed to examine the involvement of OfCad in mediating Cry1Ac toxicity. Sf9 cells transfected with OfCad showed significant immunofluorescent binding with Cry1Ac toxin and exhibited a concentration-dependent mortality effect when exposed to Cry1Ac. The OfCad knockout strain OfCad-KO, bearing homozygous 15.4 kb deletion of the OfCad gene generated by CRISPR/Cas9 mutagenesis, exhibited moderate-level resistance to Cry1Ac (14-fold) and low-level resistance to Cry1Aa (4.6-fold), but no significant changes in susceptibility to Cry1Ab and Cry1Fa, compared with the original NJ-S strain. The Cry1Ac resistance phenotype was inherited as autosomal, recessive mode, and significantly linked with the OfCad knockout in the OfCad-KO strain. These results demonstrate that the OfCad protein is a functional receptor for Cry1Ac, and disruption of OfCad confers a moderate Cry1Ac resistance in O. furnacalis. This study provides new insights into the mode of action of the Cry1Ac toxin and useful information for designing resistance monitoring and management strategies for O. furnacalis.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/toxicidade , Caderinas/metabolismo , Resistência à Doença/efeitos dos fármacos , Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/parasitologia , Animais , Bacillus thuringiensis/química
13.
Toxins (Basel) ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34437412

RESUMO

Spodoptera frugiperda and Rhopalosiphum maidis, as main pests, seriously harm the safety of maize. At present, chemical pesticides are mainly used to control these pests. However, due to residue and resistance problems, more green, environmentally benign, simple preventive control technology is needed. In this study, we reported the reason for the antifeedant activity of azadirachtin on S. frugiperda and proposed that S. frugiperda treated with azadirachtin would turn from pest into natural enemy. S. frugiperda showed an obvious antifeeding phenomenon to maize leaf treated with various azadirachtin concentrations (0.5~20 mg/L). It was found that maize leaf treated with 1 mg/L of azadirachtin has a stimulating effect on the antenna and sensillum basiconicum of S. frugiperda, and azadirachtin can affect the feeding behavior of S. frugiperda. Additionally, after treating maize leaves or maize leaves + R. maidis with 1 mg/L of azadirachtin, the predatory behavior of S. frugiperda changed from a preference for eating maize leaves to R. maidis. Moreover, the molting of R. maidis can promote the change of this predatory behavior. Our results, for the first time, propose that the combined control technology of azadirachtin insecticide and biological control could turn S. frugiperda from pest into natural enemy, which can effectively eliminate R. maidis and protect maize. This combined control technology provides a new way for pest management and has good ecological, environmental, and economic benefits.


Assuntos
Limoninas/administração & dosagem , Controle Biológico de Vetores , Spodoptera/efeitos dos fármacos , Animais , Afídeos/parasitologia , Antenas de Artrópodes/anormalidades , Antenas de Artrópodes/efeitos dos fármacos , Comportamento Alimentar , Interações Hospedeiro-Parasita , Limoninas/toxicidade , Folhas de Planta/parasitologia , Comportamento Predatório/efeitos dos fármacos , Sensilas/anormalidades , Sensilas/efeitos dos fármacos , Spodoptera/fisiologia , Zea mays/parasitologia
14.
PLoS One ; 16(7): e0254328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252127

RESUMO

Fall armyworm (FAW; Spodoptera frugiperda), an exotic moth which recently invaded Africa, is a highly destructive pest of cereals especially maize a highly valued staple crop in Nigeria. The use of natural enemies such as predators or parasitoids for FAW control is more economically viable and environmentally safer than currently recommended synthetic insecticides. Natural enemies to combat the pest have not yet been reported in Nigeria. An exploration for the pests' natural enemies was undertaken by collecting FAW eggs and larvae from maize fields. These were reared in the laboratory for emergence, identification and efficacy as natural enemies. This yielded Euplectrus laphygmae (Hymenoptera: Eulophidae); Telenomus remus (Hymenoptera: Platygastridae) and Trombidium sp. (Acari.: Trombidiidae). Cotesia or Apanteles spp. were inferred to occur since Stictopisthus sp. (Hym.: Ichneumonidae), a secondary parasitoid, that attacks cocoons of Microgasterinae (e.g. Cotesia, Apanteles etc.) also emerged. Species of yet-to-be identified predators were also observed in various niches of maize plants. A positive relationship was found between FAW instar and the number of E. laphygmae eggs/instar ranging, on average, from 1.5 on second instar to 5.5 on fourth instars hosts. Parasitism rate of T. remus on FAW eggs was 100%. Parasitic mite infestation resulted in increasing paleness, reduced feeding, growth and movement as well as death of FAW 1st instars. Thus, the occurrence of FAW natural enemies in Nigeria calls for advocacy campaign to incorporate their use into integrated pest management strategies that attract and allow natural enemies to thrive for FAW management.


Assuntos
Spodoptera/fisiologia , Animais , Fazendas , Larva/fisiologia , Funções Verossimilhança , Nigéria , Óvulo/fisiologia , Parasitos/fisiologia , Filogenia , Comportamento Predatório/fisiologia , Zea mays/parasitologia
15.
Sci Rep ; 11(1): 14770, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285266

RESUMO

Pink stem borer (PSB) causes considerable yield losses to maize. Plant-insect interactions have significant implications for sustainable pest management. The present study demonstrated that PSB feeding, mechanical wounding, a combination of mechanical wounding and PSB regurgitation and exogenous application of methyl jasmonate have induced phenolic compound mediated defense responses both at short term (within 2 days of treatment) and long term (in 15 days of treatment) in leaf and stalk tissues of maize. The quantification of two major defense related phenolic compounds namely p-Coumaric acid (p-CA) and ferulic acid (FA) was carried out through ultra-fast liquid chromatography (UFLC) at 2 and 15 days after imposing the above treatments. The p-CA content induced in leaf tissues of maize genotypes were intrinsically higher when challenged by PSB attack at V3 and V6 stages in short- and long-term responses. Higher p-CA content was observed in stalk tissues upon wounding and regurgitation in short- and long-term responses at V3 and V6 stages. Significant accumulation of FA content was also observed in leaf tissues in response to PSB feeding at V3 stage in long-term response while at V6 stage it was observed both in short- and long-term responses. In stalk tissues, methyl jasmonate induced higher FA content in short-term response at V3 stage. However, at V6 stage PSB feeding induced FA accumulation in the short-term while, wounding and regurgitation treatment-induced defense responses in the long-term. In general, the resistant (DMRE 63, CM 500) and moderately resistant genotypes (WNZ ExoticPool) accumulated significantly higher contents of p-CA and FA content than susceptible ones (CM 202, BML 6) in most of the cases. The study indicates that phenolic mediated defense responses in maize are induced by PSB attack followed by wounding and regurgitation compared to the other induced treatments. Furthermore, the study confirmed that induced defense responses vary with plant genotype, stage of crop growth, plant tissue and short and long-term responses. The results of the study suggested that the Phenolic acids i.e. p-CA and FA may contribute to maize resistance mechanisms in the maize-PSB interaction system.


Assuntos
Acetatos/farmacologia , Ácidos Cumáricos/isolamento & purificação , Ciclopentanos/farmacologia , Mariposas/patogenicidade , Oxilipinas/farmacologia , Zea mays/crescimento & desenvolvimento , Animais , Parede Celular/química , Cromatografia Líquida , Resistência à Doença , Ácidos Graxos/química , Folhas de Planta/química , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/parasitologia
16.
Bull Entomol Res ; 111(5): 595-604, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33998414

RESUMO

With further climate change still expected, it is predicted to increase the frequency with plants will be water stressed, which subsequently influences phytophagous insects, particularly Lepidoptera with limited mobility of larvae. Previous studies have indicated that oviposition preference and offspring performance of Lepidoptera insects are sensitive to drought separately. However, the integration of their two properties is not always seen. Here, we evaluated changes in oviposition selection and offspring fitness of a Lepidoptera insect under three water-stressed treatments using a model agroecosystem consisting of maize Zea mays, and Asian corn borer Ostrinia furnacalis. Results found that female O. furnacalis preferred to laying their eggs on well-watered maize, and then their offspring tended to survive better, attained bigger larvae mass, and developed more pupae and adults on the preferred maize. Oviposition selection of O. furnacalis positively correlated with height and leaf traits of maize, and offspring fitness positively related with water content and phytochemical traits of hosts. Overall, these results suggest that oviposition choice performed by O. furnacalis reflects the maximization of offspring fitness, supporting preference-performance hypothesis. This finding further highlights that the importance of simultaneous evaluation of performance and performance for water driving forces should be involved, in order to accurately predict population size of O. furnacalis under altered precipitation pattern.


Assuntos
Comportamento de Escolha , Mariposas/fisiologia , Oviposição , Zea mays/parasitologia , Animais , Desidratação , Herbivoria , Mariposas/crescimento & desenvolvimento , Zea mays/fisiologia
18.
Sci Rep ; 11(1): 5735, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707703

RESUMO

Because of variation in incidence and severity of damage by Chilo partellus (Swinhoe) in different geographical regions, it is difficult to identify stable sources of resistance against this pest. Therefore, the present studies were undertaken on biological attributes (damage in resistant and susceptible genotypes, survival and development) and biochemical profiles (amino acids and lipophilic compound) of C. partellus populations from eight geographical regions to understand it's population structure in India. There was a significant variation in biological attributes and biochemical profiles of C. partellus populations from different geographical regions. Based on virulence and biological attributes, similarity index placed the C. partellus populations in five groups. Likewise, lipophilic and amino acid profiling also placed the C. partellus populations in five groups. However, the different clusters based on biological and biochemical attributes did not include populations from the same regions. Similarity index based on virulence, biological attributes, and amino acids and lipophilic profiles placed the C. partellus populations in six groups. The C. partellus populations from Hisar, Hyderabad, Parbhani and Coimbatore were distinct from each other, indicating that there are four biotypes of C. partellus in India. The results suggested that sorghum and maize genotypes need to be tested against these four populations to identify stable sources of resistance. However, there is a need for further studies to establish the restriction in gene flow through molecular approaches across geographical regions to establish the distinctiveness of different biotypes of C. partellus in India.


Assuntos
Biodiversidade , Mariposas/fisiologia , Caules de Planta/parasitologia , Aminoácidos/análise , Animais , Genótipo , Geografia , Índia , Larva/fisiologia , Lipídeos/análise , Dinâmica Populacional , Análise de Componente Principal , Sorghum/genética , Sorghum/parasitologia , Zea mays/genética , Zea mays/parasitologia
19.
Sci Rep ; 11(1): 6797, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762675

RESUMO

Ultraviolet A (UV-A) radiation is a significant environmental factor that causes photoreceptor damage, apoptosis, and oxidative stress in insects. Ostrinia furnacalis is an important pest of corn. To understand the adaptation mechanisms of insect response to UV-A exposure, this study revealed differentially expressed genes (DEGs) and differently expressed metabolites (DEMs) in O. furnacalis under UV-A exposure. Three complementary DNA libraries were constructed from O. furnacalis adult females (CK, UV1h, and UV2h), and 50,106 expressed genes were obtained through Illumina sequencing. Of these, 157 and 637 DEGs were detected in UV1h and UV2h after UV-A exposure for 1 and 2 h, respectively, compared to CK, with 103 and 444 upregulated and 54 and 193 downregulated genes, respectively. Forty four DEGs were detected in UV2h compared to UV1h. Comparative transcriptome analysis between UV-treated and control groups revealed signal transduction, detoxification and stress response, immune defense, and antioxidative system involvement. Metabolomics analysis showed that 181 (UV1h vs. CK), 111 (UV2h vs. CK), and 34 (UV2h vs. UV1h) DEMs were obtained in positive ion mode, while 135 (UV1h vs. CK), 93 (UV2h vs. CK), and 36 (UV2h vs. UV1h) DEMs were obtained in negative ion mode. Moreover, UV-A exposure disturbed amino acid, sugar, and lipid metabolism. These findings provide insight for further studies on how insects protect themselves under UV-A stress.


Assuntos
Metaboloma/efeitos da radiação , Mariposas/metabolismo , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Animais , Regulação para Baixo/efeitos da radiação , Feminino , Biblioteca Gênica , Mariposas/genética , Mariposas/efeitos da radiação , Estresse Oxidativo/genética , Análise de Componente Principal , Transdução de Sinais/genética , Fatores de Tempo , Regulação para Cima/efeitos da radiação , Zea mays/parasitologia
20.
BMC Plant Biol ; 21(1): 138, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726668

RESUMO

BACKGROUND: Maize (Zea mays L.) is a major cereal crop, with the United States accounting for over 40% of the worldwide production. Corn leaf aphid [CLA; Rhopalosiphum maidis (Fitch)] is an economically important pest of maize and several other monocot crops. In addition to feeding damage, CLA acts as a vector for viruses that cause devastating diseases in maize. We have shown previously that the maize inbred line Mp708, which was developed by classical plant breeding, provides heightened resistance to CLA. However, the transcriptomic variation conferring CLA resistance to Mp708 has not been investigated. RESULTS: In this study, we contrasted the defense responses of the resistant Mp708 genotype to those of the susceptible Tx601 genotype at the transcriptomic (mRNA-seq) and volatile blend levels. Our results suggest that there was a greater transcriptomic remodeling in Mp708 plants in response to CLA infestation compared to the Tx601 plants. These transcriptomic signatures indicated an activation of hormonal pathways, and regulation of sesquiterpenes and terpenoid synthases in a constitutive and inducible manner. Transcriptomic analysis also revealed that the resistant Mp708 genotype possessed distinct regulation of ethylene and jasmonic acid pathways before and after aphid infestation. Finally, our results also highlight the significance of constitutive production of volatile organic compounds (VOCs) in Mp708 and Tx601 plants that may contribute to maize direct and/or indirect defense responses. CONCLUSIONS: This study provided further insights to understand the role of defense signaling networks in Mp708's resistance to CLA.


Assuntos
Afídeos , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Perfilação da Expressão Gênica , Herbivoria , Zea mays/genética , Zea mays/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...